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Matthias Birkner, José A. López-Mimbela

and Anton Wakolbinger

Abstract

Using the Feynman-Kac representation of the Fujita equation ∂
∂tu(t, x) =

−(−∆)α/2u(t, x) + G(u(t, x)), x ∈ Rd, where 0 < α ≤ 2, α < d and G : R+ →
R+ is a convex function obeying certain growth conditions, it is shown that if
v is a given global solution and 0 < ε < 1, then any solution u satisfying 0 ≤
u(0, ·) ≤ (1−ε)v(0, ·) vanishes asymptotically as t →∞. The case 0 ≤ v(0, ·) ≤
(1 + ε)u(0, ·) is also studied. For G(z) = z(d+α)/(d−α) a two-parameter family
of radially symmetric stationary solutions of the above equation is obtained.

1 Introduction

In this paper we continue our study initiated in [2] on the Fujita equation

∂

∂t
u(t, x) = Lu(t, x) + G(u(t, x)), t ≥ 0, x ∈ Rd, (1.1)

u(0, x) = ϕ(x) ≥ 0,

where L = ∆α is the fractional power −(−∆)α/2 of the Laplacian, 0 < α ≤ 2,
G : R+ → R+ is a convex function satisfying conditions (2.1) and (2.2) below, and ϕ
is a non-negative bounded measurable function on Rd.

A well-known fact is that for any non-trivial initial value ϕ there exists a number
Tϕ ∈ (0,∞] such that (1.1) has a unique solution u on Rd× [0, Tϕ) which is bounded
on Rd × [0, T ] for any 0 < T < Tϕ, and if Tϕ < ∞, then ‖u(·, t)‖L∞(Rd) → ∞ as
t ↑ Tϕ.

When Tϕ = ∞ we say that u is a global solution, and when Tϕ < ∞ we say that
u blows up in finite time or that u is non-global.

The study of blow up properties of (1.1) goes back to the fundamental work
of Fujita [6], who studied Eq. (1.1) with α = 2 and G(z) = z1+β, β > 0. The
investigation of (1.1) with a general α was initiated by Sugitani [13], who showed
that if d ≤ α/β, then for any non-vanishing initial condition the solution blows up
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in finite time. Using a Feynman-Kac representation for semilinear problems of the
form (1.1), this conclusion was re-derived in [2] and the corresponding behaviors of
equations with time-dependent nonlinearities and of various systems of semilinear
pde’s were studied.

It is known (e.g. [11], [12]) that in supercritical dimensions d > α/β, Eq. (1.1)
admits global as well non-global positive solutions, and that the “size” of the initial
condition determines which of these two behaviors is exhibited by the solutions. For
short we address this parameter constellation as the global regime.

In this note we prove two comparison criteria in the global regime:

(i) Assume the initial value ϕ ≥ 0 leads to a globally bounded solution. Then any
initial value ψ with 0 ≤ ψ ≤ (1 − ε)ϕ, ε > 0, gives rise to a solution converging to
zero.

(ii) Assume the initial value ϕ ≥ 0 leads to a solution which is uniformly bounded
away from 0 for all t > 0 and all x in some ball ⊂ Rd. Then any initial value ψ with
ψ ≥ (1 + ε)ϕ, ε > 0, gives rise to a solution which blows up in finite time.

The essential tool in proving (i) and (ii) is the probabilistic representation of the
solution of (1.1) provided by the Feynman-Kac formula, that was obtained in [2] (see
(2.3) below).

Natural candidates for the comparison in (i) and (ii) are (time-)stationary solu-
tions of (1.1), i.e. solutions of the “elliptic” equation

∆αu(x) + G(u(x)) = 0, x ∈ Rd. (1.2)

In the case α = 2 and G(z) = z1+β, it is known that (see [8], [4], [7], [14])

- for d > 2, 1 + β < (d + 2)/(d− 2), apart from u ≡ 0, no bounded non-negative
solution of (1.2) exists

- for d > 2, β = (d + 2)/(d− 2)− 1, all bounded stationary solutions of (1.2) are
given by the family

uc,A(x) =
A(d(d− 2)(d−2)/2

(
d(d− 2) + (A2/(d−2)‖x− c‖)2

)(d−2)/2
, c, x ∈ Rd, A ∈ R+. (1.3)

(Note that the two parameters of the family are the symmetry center c of u and its
value A at c.)

In the case α < 2, much less is known. For d > α and β = (d + α)/(d − α) − 1
we specify in Proposition 3.1 a two-parameter family uc,A, c ∈ Rd, 0 < A < ∞, of
radially symmetric solutions of

∆αu(x) + u1+β(x) = 0, x ∈ Rd (1.4)

with the property

uc,A(c) = A(α−d)/2, ‖x‖d−αuc,A(‖x‖) → K(d, α, β) as ‖x‖ → ∞
where K(d, α, β) is a positive constant.

We also show that the solution set of (1.4) is invariant under Kelvin transforma-
tions, and exhibit an example of a radially symmetric singular solution of (1.4).
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2 Two comparison criteria

In this section we assume that the function G in Eq. (1.1) satisfies the conditions

lim
z→0+

G(z)

z1+β
= c ∈ (0,∞) (2.1)

and ∫ ∞

θ

dz

G(z)
< ∞ (2.2)

for certain positive numbers β and θ.

Lemma 2.1 Let G be a convex function satisfying (2.1), and ε > 0. For any M > 0
there exists ε′ > 0 such that

G((1 + ε)z)

(1 + ε)z
> (1 + ε′)

G(z)

z
for 0 < z ≤ M .

Proof By considering G/c instead of G we can assume that c = 1. Given ε̃ > 0
there exists δ > 0 such that

(1− ε̃)zβ <
G(z)

z
< (1 + ε̃)zβ

for z ∈ (0, δ). Take ε̃ < ((1 + ε)β − 1)/((1 + ε)β + 1). Then for z < δ/(1 + ε) := x0,

G((1 + ε)z)

(1 + ε)z
> (1− ε̃)(1 + ε)βzβ >

(1− ε̃)(1 + ε)β

(1 + ε̃)

G(z)

z
= (1 + c1)

G(z)

z

where c1 > 0. Since z 7→ G(z)/z is continuous and strictly increasing in (0,∞) it

follows that infz∈[x0,M ]

(
G((1+ε)z)

(1+ε)z
/G(z)

z

)
> 1+c2 with c2 > 0. Taking ε′ = c1∧c2 yields

the assertion.

2

Lemma 2.2 If v is a globally bounded solution of (1.1) then, for all x,

Ptv(0, x) → 0 as t →∞,

where (Pt) is the semigroup with generator L.

Proof Indeed, from the integral form of (1.1)

v(t, x) = Ptv(0, x) +

∫ t

0

Pt−sG(v(s, x)) ds

≥ Ptv(0, x) +

∫ t

0

Pt−sG(Psv(0, x)) ds

≥ Ptv(0, x) +

∫ t

0

G(Ptv(0, x)) ds

≥ tG(Ptv(0, x)),
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where we used in the first inequality that Ptv(0, ·) ≤ v(t, ·), and Jensen’s inequality
after the second line. It follows from the global boundedness of v that

lim
t→∞

Ptv(0, x) ≤ lim
t→∞

G−1(Const.t−1) = 0.

2

Proposition 2.1 Let G be a convex, increasing function satisfying (2.1) and (2.2).
Assume the initial value ϕ ≥ 0 leads to a globally bounded solution of (1.1). Then
any initial value ψ with 0 ≤ ψ ≤ (1− ε)ϕ, ε > 0, gives rise to a solution converging
to zero.

Proof Recall that the Feynman-Kac representation of solutions of (1.1) is given by
(see [2])

u(t, x) =

∫

Rd

u(0, y)pt(y, x)Ey

[
exp

∫ t

0

G(u(s,Xs))

u(s,Xs)
ds

∣∣∣∣ Xt = x

]
dy, (2.3)

where (Xt) is the Lévy process with generator L, and pt(x, y), t > 0, x, y ∈ Rd, are
its transition densities.

Suppose that v is a globally bounded solution of (1.1) and that 0 ≤ u(0, ·) ≤
(1 − ε)v(0, ·) where 0 < ε < 1. As (1.1) preserves ordering we have u(t, x) ≤ v(t, x)
for all t ≥ 0 and x ∈ Rd, which together with (2.3) improves to

u(t, x) ≤
∫

Rd

(1− ε)v(0, y)pt(y, x)Ey

[
exp

∫ t

0

G(v(s,Xs))

v(s,Xs)
ds

∣∣∣∣ Xt = x

]
dy

= (1− ε)v(t, x)

uniformly in t and x. Inserting this bound again into the Feynman-Kac representation
of u yields

u(t, x) ≤
∫

Rd

u(0, y)pt(y, x)Ey

[
exp

∫ t

0

G((1− ε)v(s,Xs))

(1− ε)v(s,Xs)
ds

∣∣∣∣ Xt = x

]
dy.

Putting z(t, x) := (1 − ε)v(t, x) in the above inequality and using Lemma 1 (with ε
in Lemma 1 substituted by ε̃ := ε/(1− ε)) we get

u(t, x) ≤
∫

Rd

u(0, y)pt(y, x)Ey

[
exp

∫ t

0

1

1 + ε′
G((1 + ε̃)z(s,Xs))

(1 + ε̃)z(s,Xs)
ds

∣∣∣∣ Xt = x

]
dy

=

∫

Rd

u(0, y)pt(y, x)Ey

[
e(1−ε′′)At

∣∣∣ Xt = x
]

dy,

where ε′ > 0 is given by Lemma 1, ε′′ := ε′/(1 + ε′) and

At :=

∫ t

0

G(v(s,Xs))

v(s,Xs)
ds. (2.4)
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Thus,

u(t, x) ≤
∫

Rd

u(0, y)pt(y, x)Ey

[
e(1−ε′′)At1(eAt < (Ptv(0, x))−1/2)

∣∣∣ Xt = x
]

dy

+

∫

Rd

u(0, y)pt(y, x)Ey

[
e(1−ε′′)At1(eAt ≥ (Ptv(0, x))−1/2)

∣∣∣ Xt = x
]

dy.

Since eAt ≥ (Ptv(0, x))−1/2 implies e(1−ε′′)At ≤ eAt (Ptv(0, x))ε′′/2, we obtain

u(t, x) ≤
∫

Rd

u(0, y)pt(y, x) (Ptv(0, x))−1/2

+ (Ptv(0, x))ε′′/2

∫

Rd

u(0, y)pt(y, x)Ey

[
eAt

∣∣ Xt = x
]

dy

≤ (1− ε)
(
(Ptv(0, x))1/2 + v(t, x)(Ptv(0, x))ε′′/2

)

which tends to 0 uniformly as t →∞ due to Lemma 2.2. 2

Proposition 2.2 Let G be a convex, increasing function satisfying (2.1) and (2.2).
Assume the initial value ϕ = v(0, ·) ≥ 0 leads to a solution of (1.1) which for some
open ball B ⊂ Rd and some κ > 0 obeys

inf
x∈B

v(t, x) ≥ κ for all sufficiently large t > 0. (2.5)

Then for any ε > 0, the initial condition (1 + ε)ϕ leads to blow-up in finite time.

Proof By the Feynman-Kac formula,

v(t, x) =

∫

Rd

v(0, y)pt(y, x)Ey

[
eAt

∣∣ Xt = x
]

dy,

where At is given by (2.4). If K > 0 then
∫

Rd

v(0, y)pt(y, x)Ey

[
eAt ; At ≤ K

∣∣ Xt = x
]

dy ≤ eKExv(0, Xt) → 0

as t → ∞ uniformly in x due to Lemma 2.2. Therefore, for all K > 0 there exists
T0 = T0(K, γ) > 0 such that for t > T0

v(t, x)∫
Rd v(0, y)pt(y, x)Ey [eAt ; At ≥ K| Xt = x] dy

≤ 2. (2.6)

Without loss of generality we can assume that infx∈B1(0) v(t, x) ≥ κ for all t large
enough, where Br(x) denotes the ball in Rd of radius r centered at x. Arguing as
above we check via the Feynman-Kac representation that for all t ≥ 0 and x ∈ Rd,
u(t, x) ≥ (1 + ε)v(t, x). Plugging this again into the Feynman-Kac representation for
u yields

u(t, x) ≥ (1 + ε)

∫

Rd

v(0, y)pt(y, x)Ey

[
exp

∫ t

0

G((1 + ε)v(s,Xs))

(1 + ε)v(s,Xs)
ds

∣∣∣∣ Xt = x

]
dy

≥ (1 + ε)

∫

Rd

v(0, y)pt(y, x)Ey

[
e(1+ε′)At

∣∣∣ Xt = x
]

dy
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for some ε′ > 0 by Lemma 2.1. Using this and (2.6) we obtain for given K > 0 nd t
big enough that

u(t, x) ≥ (1 + ε)eKε′
∫

Rd

v(0, y)pt(y, x)Ey

[
eAt ; At ≥ K

∣∣ Xt = x
]

dy

≥ (1 + ε)eKε′ v(t, x)

2
.

Hence, for any K > 0 we find infx∈B1(0) u(t, x) ≥ κ(1+ε)eKε′/2 for all sufficiently large
t. As is well known (see e.g. [10]), this inequality together with (2.2) are sufficient
for finite-time blowup of u. 2

Corollary 2.1 Let G be a convex, increasing function satisfying (2.1) and (2.2), and
ϕ ≥ 0 a non-trivial positive bounded solution of

Lϕ(x) + G(ϕ(x)) = 0.

a) For each ε > 0 the solution u of (1.1) with initial value u(0, x) = (1 + ε)ϕ(x),
x ∈ Rd, blows up in finite time.

b) For each ε ∈ (0, 1) the solution u of (1.1) with initial value u(0, x) = (1−ε)ϕ(x),
x ∈ Rd converges to 0 as t →∞.

Proof This is immediate from Proposition 2.2. 2

3 A class of radially symmetric stationary solu-

tions

We now set out to specify a family of positive stationary solutions of (1.1) in the
particular case of G(z) = zp, where p = (d + α)/(d − α). Before doing this, we still
consider the case of a general p, and note that the “elliptic” equation

∆αu(x) + up(x) = 0, x ∈ Rd (3.1)

can be rewritten in integral form as

u(x) =

∫ ∞

0

Ex [up(Xt)] dt, x ∈ Rd, (3.2)

where (Xt) denotes the (symmetric) α-stable process in Rd. Hence, for d ≤ α, due
to recurrence of (Xt), the only non-negative solutions of (3.1) are u ≡ 0 and u ≡ ∞.
Therefore, we henceforth assume that d > α, in which case (3.2) rewrites as

u(x) =

∫

Rd

A(d, α)up(y)

‖y − x‖d−α
dy, x ∈ Rd, (3.3)

where A(d, α) := Γ(1
2
(d− α))/[Γ(1

2
α)2απd/2].
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Proposition 3.1 If p = (d + α)/(d − α), then for any A ∈ (0,∞) and c ∈ Rd the
function

uc,A(x) =
A[

1 +
(
A2/(d−α)2−1

(
Γ

(
d+α

2

) /
Γ

(
d−α

2

))−1/α ‖x− c‖
)2

](d−α)/2

solves (3.1).

Proof Without loss of generality we assume that c is the origin. Due to (3.3) it
suffices to show that

u0,A(x) =

∫

Rd

A(d, α)up
0,A(y)

‖y − x‖d−α
dy, x ∈ Rd. (3.4)

Let us write a := A−2/(d−α)2
(
Γ

(
d+α

2

) /
Γ

(
d−α

2

))1/α
. We first note that

u0,A(x) =
A

(1 + 4π2‖ x
2πa
‖2)(d−α)/2

= AB̂d−α

( x

2πa

)

(see [5], p. 155), where for any f ∈ L1(Rn), f̂(x) :=
∫
Rd e−2πiy·xf(y) dy is the Fourier

transform of f , and for any complex w with Re(w) > 0

Bw(x) =
1

Γ(w
2
)(4π)d/2

∫ ∞

0

r(w−d)/2−1e−r−‖x‖2/4r dr

is the Bessel potential of order w. Hence

û0,A(x) = A
[
B̂d−α

( ·
2πa

)]̂
(x) = A(2πa)d̂̂Bd−α(2πax) = A(2πa)dBd−α(−2πax).

Since

Bw(x) =
2(d−w)/2+1

Γ
(

w
2

)
(4π)d/2

‖x‖(w−d)/2K(d−w)/2(‖x‖), x ∈ Rd, (3.5)

where for any complex ν, Kν is the Macdonald’s function ([15], §6·22)

Kν(z) =
1

2

(
1

2
z

)ν ∫ ∞

0

r−ν−1e−r−z2/4rdr, Re(z2) > 0,

it follows that

û0,A(x) = Aad−α/2π(d−α)/2 2

Γ(d−α
2

)
‖x‖−α/2Kα/2(‖2πax‖). (3.6)

To compute the Fourier transform of the other side of (3.4) we use the convolution
theorem, (3.5) and

[A(d, α)‖ · ‖−(d−α)
]̂

(x) = (2π‖x‖)−α , x ∈ Rd, 0 < Re(α) < d,
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(e.g. [5], p. 154) to obtain

[∫

Rd

A(d, α)up
0,A(y)

‖y − ·‖d−α
dy

]
̂(x) = (2π)−α‖x‖−αAp

[
1(

1 + 4π2‖ ·
2πa
‖2

)(d+α)/2

]
̂(x)

= (2π)−α‖x‖−αAp
[
B̂d+α

( ·
2πa

)]̂
(x)

= (2π)−α‖x‖−αAp(2πa)dBd+α(−2πax)

= 2−απ(d−α)/2‖x‖−α/2Apad+α/2 2

Γ
(

d+α
2

)K−α/2(‖2πax‖)

Since Kν = K−ν ([1], Formula 9.6.6), by comparing the RHS of the last equality with
that of (3.6) we see that they are equal for the value of a stated at the beginning of
the proof. The result follows from uniqueness of Fourier transforms. 2

Remarks 1. Recall [3, 9] that for 0 < α ≤ 2 and d > α the Kelvin transform of u
is defined by

v(x) :=
1

‖x‖d−α
u

(
x

‖x‖2

)
, x ∈ Rd, x 6= 0. (3.7)

A simple calculation shows that for any fixed c ∈ Rd the family of solutions {uc,A}A≥0

rendered by Proposition 3.1 is invariant under the Kelvin transform with center at c,
given by

vc(x) :=
1

‖x− c‖d−α
uc,A

(
c +

x− c

‖x− c‖2

)
.

2. Moreover, if u is any given regular positive solution of (3.1) (where 0 < α ≤ 2,
p > 1 and d > α) and x 6= 0, then its Kelvin transform v(x) satisfies

∆αv(x) +
vp(x)

‖x‖(d+α)−p(d−α)
= 0. (3.8)

Indeed, let Gα denote the Green’s operator corresponding to ∆α, and x 6= 0. Then,

−Gα

(
− vp(x)

‖x‖(d+α)−p(d−α)

)
=

∫ A(d, α)

‖x− y‖d−α
· 1

‖y‖(d+α)−p(d−α)

· 1

‖y‖(d−α)p
· up

(
y

‖y‖2

)
dy

= A(d, α)

∫
1∥∥∥x− z
‖z‖2

∥∥∥
d−α

· 1

‖z‖d−α
· up(z) dz

= A(d, α)

∫
1∥∥∥ x · ‖z‖ − z

‖z‖

∥∥∥
d−α

· up(z) dz

= A(d, α)

∫

Rd

up(z) dz∥∥∥ x
‖x‖ − ‖x‖ · z

∥∥∥
d−α

=
1

‖x‖d−α
u

(
x

‖x‖2

)
= v(x),
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where we used the elementary identity ‖x · ‖z‖− z
‖z‖‖ = ‖ x

‖x‖ −‖x‖ · z‖ in the fourth
equality.

3. Proceeding as in the proof of Proposition 3.1 one can verify that a singular
explicit solution to (3.1) is given by

using(x) =

[
2α

(
Γ

(
d + α

4

)/
Γ

(
d− α

4

))2
]1/(p−1)

· 1

‖x‖(d−α)/2
, x 6= 0,

and that using is a fixed point of the Kelvin transform (3.7).
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